
Scalable Synthesis of Regular Expressions From Only Positive
Examples

MARK BARBONE∗ and ELIZAVETA PERTSEVA∗, University of California, San Diego, USA

Category: Undergraduate.
Advisors: Nadia Polikarpova and Taylor Berg-Kirkpatrick.

Synthesizing regular expressions from user-provided examples is a popular research area for programming by
example (PBE) systems. Yet, synthesis from only positive examples remains an unsolved challenge due to a lack
of a clear criterion to select the best solution and an infinite search space. Existing tools [3, 4, 8, 12, 13] avoid
this problem by requiring a wealth of additional information, such as negative examples or natural language
descriptions. Our prior work Regex+ [9] tackled the first challenge by introducing a pragmatic ranking
function, which tripled the accuracy of existing neural and enumerative synthesizers on positive-example-only
benchmarks. This paper builds upon Regex+, by addressing the second challenge of scalability. We introduce
an admissible A* heuristic that relies on the prior ranking function, achieving a 90x decrease in memory usage
and 1.9x speedup on a novel suite of benchmarks collected from a human study.

CCS Concepts: • Software and its engineering → Software notations and tools; • Context specific
languages → Programming by example ; • Theory of computation → Regular languages.

Additional Key Words and Phrases: Program synthesis, Regular expressions, A*

1 INTRODUCTION
Suppose you are a data scientist searching for Brazilian CNPJs (company identification numbers)
in a large document. You quickly identify five initial CNPJs:

60.701.190/0001-04, 33.000.167/0001-01
02.916.265/0001-60, 00.623.904/0001-73

00.000.000/0001-91

But you lack the domain knowledge to write negative examples or natural language descriptions.
Writing regexes is difficult [2], so a possible solution is to input the examples into a synthesis tool.
However, to the best of our knowledge, no existing one-shot regex synthesizer correctly solves this
problem. Enumerative tools [4, 12, 13] require negative examples, while neural tools [3, 4, 8, 12]
need natural language descriptions to perform well.

In prior work [9], we attempted to find a solution by introducing a pragamatic ranking function,
which balanced simplicity and specificity. Our tool Regex+ was able to correctly generalize from
only positive examples but could not scale past only a few inputs. For this specific example, Regex+
reaches memory overload with more than 3 CNPJS.

In this work, we address the scalability shortcomings with new search techniques, which, from
the five inputs, output

\d{2}\.\d{3}\.\d{3}/0001-\d{2},

the correct answer for the CNPJ example in less than a minute, using less than 30MB of RAM.

1.1 Challenges and Solutions
Synthesizing from positive examples has three main challenges, which we will briefly outline below.
Our prior work focuses on the first one, while here, we attempt to address the next two.
∗Both authors contributed equally to this research. ACM membership numbers: 9831285 and 4261444

Authors’ address: Mark Barbone, mbarbone@ucsd.edu; Elizaveta Pertseva, epertsev@ucsd.edu, University of California,
San Diego, 9500 Gilman Dr., La Jolla, California, USA, 92093.

2 Barbone, Pertseva

1.1.1 Ranking Function. In contrast to many synthesis problems, where the challenge lies in finding
any program that matches the specification, in this case, solutions are readily found but are mostly
unhelpful to the user. For example, both

.* and (60\.701\.190/0001-04)|(33.000.167/0001-01)

match the first two CNPJ examples, but one is too permissive, and the other is too specific.
In our prior work [9], we introduced a pragmatic ranking function that assumes that users act

as rational speakers and choose examples in order to teach a concept. The idea of pragmatics has
recently been explored in other domains in program synthesis but with different models. [10] Our
pragmatic ranking function assigns each regex specificity and simplicity scores, which respectively
come from the probability the regex generated the inputs and the probability of the regex itself.
For the CNPJ example, our ranking function selects the correct answer.

1.1.2 Search Strategy. Efficiently searching for the best regex presents a second challenge. Enumer-
ative strategies [1, 4, 7] face combinatorial explosion, as the correct answer can be very complex:
for instance, the regex for CNPJ’s has 18 components. On the other hand, although representation-
based search strategies as in BlinkFill or FlashFill [5, 11] and our prior work can make search faster
by tailoring the search space to the particular problem, in our use case the resulting datastructures
grow exponentially and take up too much memory.
Our solution uses A* search guided by our pragmatic ranking function, with a pragmatic ad-

missible heuristic. Notably, our ranking function depends on the inputs and thus does not face
the same issues as enumerative search with constant weights. Our A* search also constructs the
version-space algebra (VSA) datastructure [6] from representation-based search on demand, and so
it reaps the benefits of representation-based search without the associated memory demands.

1.1.3 Benchmarks. Finally, we need benchmarks to evaluate our synthesis tool. To the best of our
knowledge, there does not currently exist a comprehensive benchmark suite for regex synthesis from
positive examples. While prior work has mainly relied on scraping stack overflow [4], the majority
of posts rely on natural language descriptions, thus containing an insufficient number/quality of
positive examples.
To remedy this problem, we introduce a human study framework that gathers examples from

different users for a custom set of regexes. We encode example generation as a game, incentivizing
users to provide helpful examples. We introduce a fictional character Charlie, the recipient of
the examples who is trying to understand the pattern, to cultivate empathy and increase user
investment in the task.

In summary, our work contributes the following:
• An implementation of A* search for regex synthesis
• A pragmatic admissible heuristic for A* search
• A framework for collecting positive examples conveying regexes from real users

2 SEARCH
We first describe the graph on which we perform A*, and then describe our admissible heuristic.

2.1 The Graph
To efficiently represent the search space, we choose a fixed grammar of atomic regex components,
and then limit our search to sequences 𝑟1𝑟2 . . . 𝑟𝑘 of atomic components. This results in a grammar
which is simple enough to enable efficient synthesis while also sophisticated enough to express
useful regular expressions.

Scalable Synthesis of Regular Expressions From Only Positive Examples 3

We formulate the synthesis problem as a graph search on the DAG whose nodes are tuples
(𝑖1, . . . , 𝑖𝑁) of indices into the given examples, and the edges from (𝑖1, . . . , 𝑖𝑁) to (𝑗1, . . . , 𝑗𝑁) are
atomic components matching the corresponding substrings. An acceptable regex is then a path
from (0, . . . , 0) to (|𝑒1 |, . . . , |𝑒𝑁 |) in this graph.

In this work our A* search never fully constructs this graph, saving memory. Instead, we compute
edges and nodes as they are explored during the search process.

2.2 The Heuristic
Our pragmatic ranking function assigns each edge in the graph a weight as a sum of a simplicity
score, and a specificity score for each example:

Actual(𝑒1, . . . , 𝑒𝑁) = min
𝑅=𝑟1 ...𝑟𝑘

[
Simplicity(𝑅) +

𝑁∑︁
𝑖=1

Specificity(𝑅, 𝑒𝑖)
]

(1)

Intuitively, the simplicity score rewards simpler regexes while the specificity score rewards regexes
which match the inputs more closely. These scores are derived from probabilities, so that the most
likely regex according to our probabilistic model receives the best score.
As the specificity scores are always nonnegative, (1) may be soundly underapproximated by

considering some subset 𝑆 ⊆ {1, . . . , 𝑁 } of the examples:

Heuristic𝑆 (𝑒1, . . . , 𝑒𝑁) = min
𝑅=𝑟1 ...𝑟𝑘

Simplicity(𝑅) +
𝑁∑︁
𝑖=1
𝑖∈𝑆

Specificity(𝑅, 𝑒𝑖)


≤ Actual(𝑒1, . . . , 𝑒𝑁).
For small sizes of 𝑆 , we may efficiently precompute the heuristic using VSAs, and then take

the maximum over any number of choices of 𝑆 . Empirically, we found that |𝑆 | = 2 strikes the
best balance between not using too much memory while still successfully pruning the space and
speeding up the search.

3 RESULTS
Using our human study framework, we collected 373 total responses from 20 users for 19 regexes
taken from the Regel benchmark suite [4] and originally coming from Stack Overflow. We ran
the human study on Prolific 1 and included $12 an hour compensation, with the study on average
taking 30 minutes. The number of provided examples varied from 0 to 13. We chose to remove any
submission that had 0 examples provided. Users were screened for programming experience.

Our results show a 7% relative decrease in total percent failed, and a 5% relative increase in total
correct, as illustrated in Table 1. Further, the average time per problem decreases 1.9x and the
average RAM usage decreases 90x.

Correct Ran out of
RAM (8GB Max)

Ran out of time
(5 minutes max) Total failed

VSA Search 25.46% 15.01% 0% 15.01%
A* Search 26.00% 0% 14.20% 14.20%

Table 1. Performance Comparison

1https://www.prolific.co/

https://www.prolific.co/

4 Barbone, Pertseva

REFERENCES
[1] Rajeev Alur, Arjun Radhakrishna, and Abhishek Udupa. 2017. Scaling Enumerative Program Synthesis via Divide and

Conquer. 319–336. https://doi.org/10.1007/978-3-662-54577-5_18
[2] Carl Chapman, Peipei Wang, and Kathryn T. Stolee. 2017. Exploring Regular Expression Comprehension. In Proceedings

of the 32nd IEEE/ACM International Conference on Automated Software Engineering (Urbana-Champaign, IL, USA) (ASE
2017). IEEE Press, 405–416.

[3] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde, Jared Kaplan, Harri Edwards, Yura Burda,
Nicholas Joseph, Greg Brockman, Alex Ray, Raul Puri, Gretchen Krueger, Michael Petrov, Heidy Khlaaf, Girish Sastry,
Pamela Mishkin, Brooke Chan, Scott Gray, and Wojciech Zaremba. 2021. Evaluating Large Language Models Trained
on Code. (07 2021).

[4] Qiaochu Chen, Xinyu Wang, Xi Ye, Greg Durrett, and Isil Dillig. 2020. Multi-modal synthesis of regular expressions.
Proceedings of the 41st ACM SIGPLAN Conference on Programming Language Design and Implementation (2020).

[5] Sumit Gulwani. 2011. Automating string processing in spreadsheets using input-output examples. ACM Sigplan
Notices 46, 1 (2011), 317–330.

[6] Tessa Lau, Steven A Wolfman, Pedro Domingos, and Daniel S Weld. 2003. Programming by Demonstration Using
Version Space Algebra. Machine Learning 53, 1 (2003), 111–156.

[7] Woosuk Lee, Kihong Heo, Rajeev Alur, and Mayur Naik. 2018. Accelerating Search-Based Program Synthesis Using
Learned Probabilistic Models. In Proceedings of the 39th ACM SIGPLAN Conference on Programming Language Design
and Implementation (Philadelphia, PA, USA) (PLDI 2018). Association for Computing Machinery, New York, NY, USA,
436–449. https://doi.org/10.1145/3192366.3192410

[8] Nicholas Locascio, Karthik Narasimhan, Eduardo DeLeon, Nate Kushman, and Regina Barzilay. 2016. Neural Generation
of Regular Expressions from Natural Language with Minimal Domain Knowledge. In Proceedings of the 2016 Conference
on Empirical Methods in Natural Language Processing. Association for Computational Linguistics, Austin, Texas,
1918–1923. https://doi.org/10.18653/v1/D16-1197

[9] Elizaveta Pertseva, Mark Barbone, Joey Rudek, and Nadia Polikarpova. 2022. Regex+: Synthesizing Regular Expressions
from Positive Examples. 11TH Workshop on Synthesis (August 2022). https://par.nsf.gov/biblio/10336574

[10] Yewen Pu, Kevin Ellis, Marta Kryven, Joshua B. Tenenbaum, and Armando Solar-Lezama. 2020. Program Synthesis
with Pragmatic Communication. In Proceedings of the 34th International Conference on Neural Information Processing
Systems (Vancouver, BC, Canada) (NIPS’20). Curran Associates Inc., Red Hook, NY, USA, Article 1111, 11 pages.

[11] Rishabh Singh. 2016. BlinkFill: semi-supervised programming by example for syntactic string transformations.
Proceedings of the VLDB Endowment 9 (06 2016), 816–827. https://doi.org/10.14778/2977797.2977807

[12] Xi Ye, Qiaochu Chen, Isil Dillig, and Greg Durrett. 2020. Benchmarking Multimodal Regex Synthesis with Complex
Structures. In Proceedings of the 58th Annual Meeting of the Association for Computational Linguistics. Association for
Computational Linguistics, Online, 6081–6094. https://doi.org/10.18653/v1/2020.acl-main.541

[13] Tianyi Zhang, London Lowmanstone, Xinyu Wang, and Elena L. Glassman. 2020. Interactive Program Synthesis by
Augmented Examples. Association for Computing Machinery, New York, NY, USA, 627–648. https://doi.org/10.1145/
3379337.3415900

https://doi.org/10.1007/978-3-662-54577-5_18
https://doi.org/10.1145/3192366.3192410
https://doi.org/10.18653/v1/D16-1197
https://par.nsf.gov/biblio/10336574
https://doi.org/10.14778/2977797.2977807
https://doi.org/10.18653/v1/2020.acl-main.541
https://doi.org/10.1145/3379337.3415900
https://doi.org/10.1145/3379337.3415900

	Abstract
	1 Introduction
	1.1 Challenges and Solutions

	2 Search
	2.1 The Graph
	2.2 The Heuristic

	3 Results
	References

